Monday, October 26, 2009

Sesamin

Scivation Sesamin 180 Sci-Gels.

Sesamin is in sesame seeds.

Sesamin Stimulates Osteoblast Differentiation Through p38 and ERK1/2 MAPK Signaling Pathways.

"Sesamin [is] a major lignan compound found in Sesamun indicum Linn.
Cell cytotoxicity and proliferative in hFOB1.19 were examined by MTT and alamar blue assay up to 96 hour of treatment. Gene expression of COL1, ALP, BMP-2, Runx2, OC, RANKL and OPG were detected after 24 hour of sesamin treatment. ALP activity was measured at day 7, 14 and 21 of cultured. For mineralized assay, ADSCs were cultured in the presence of osteogenic media supplement with or without sesamin for 21 days and then stain with Alizarin Red S staining. MAPK signaling pathway activation was observed by using western blotting.
Sesamin promoted the expression COL1, ALP, OCN, BMP-2 and Runx2 in hFOB1.19. On the other hand, sesamin was able to up-regulate OPG and down-regulate RANKL gene expression. ALP activity also significantly increased after sesamin treatment. Interestingly, sesamin induced formation of mineralized nodules in adipose derived stem cells (ADSCs) as observed by Alizarin Red S staining; this implies that sesamin has anabolic effects both on progenitor and committed cell stages of osteoblasts. Western blotting data showed that sesamin activated phosphorylation of p38 and ERK1/2 in hFOB1.19.
The data suggest that sesamin has the ability to trigger osteoblast differentiation by activation of the MAPK signaling pathway (p38 and ERK) and possibly indirectly regulate osteoclast development via the expression of OPG and RANKL in osteoblasts."

It's possible that sesamin has effects on chondrogenesis too.


Chondroprotective and anti-inflammatory effects of sesamin.

"[Sesamin] has an anti-inflammatory effect by specifically inhibiting Δ5-desaturase in polyunsaturated fatty acid biosynthesis. The chondroprotective effects of sesamin were thus studied in a porcine cartilage explant induced with interleukin-1beta (IL-1β) and in a papain-induced osteoarthritis rat model. With the porcine cartilage explant, IL-1β induced release of sulfated-glycosaminoglycan (s-GAG) and hydroxyproline release, and this induction was significantly inhibited by sesamin. This ability to inhibit these processes might be due to its ability to decrease expression of MMP-1, -3 and -13, which can degrade both PGs and type II collagen, both at the mRNA and protein levels. Interestingly, activation of MMP-3 might also be inhibited by sesamin. Moreover, in human articular chondrocytes (HACs), some pathways of IL-1β signal transduction were inhibited by sesamin: p38 and JNK{this is in contrast to osteoblasts where p38 was activated}. In the papain-induced OA rat model, sesamin treatment reversed the following pathological changes in OA cartilage: reduced disorganization of chondrocytes in cartilage, increased cartilage thickness, and decreased type II collagen and PGs loss. Sesamin alone might increase formation of type II collagen and PGs in the cartilage tissue of control rats."

We should mainly look at the control rats as osteoarthritis alters a lot of biological processes.

"Sesamin exposure inhibited IL-1β signals through p38 and JNK but did not act through ERK1/2"

" rats treated with 1 and 10 μM sesamin showed strong and diffuse collagen intensity in the extracellular matrix of the cartilage tissue sections in the control groups"

No comments:

Post a Comment